lol电竞|投注-首页

      <form id="bbttr"><th id="bbttr"></th></form><address id="bbttr"></address>
      <address id="bbttr"></address><form id="bbttr"></form>


                    Improved Bid Prices for Choice-Based Network Revenue Management

                    Joern Meissner, Arne K Strauss

                    Abstract One of the latest developments in network revenue management (RM) is the incorporation of customer purchase behavior via discrete choice models. Many authors presented control policies for the booking process that are expressed in terms of which combination of products to offer at a given point in time and given resource inventories. However, in many implemented RM systems—most notably in the hotel industry—bid price control is being used, and this entails the problem that the recommended combination of products as identified by these policies might not be representable through bid price control. If demand were independent from available product alternatives, an optimal choice of bid prices is to use the marginal value of capacity for each resource in the network. But under dependent demand, this is not necessarily the case. In fact, it seems that these bid prices are typically not restrictive enough and result in buy-down effects.

                    We propose (1) a simple and fast heuristic that iteratively improves on an initial guess for the bid price vector; this first guess could be, for example, dynamic estimates of the marginal value of capacity. Moreover, (2) we demonstrate that using these dynamic marginal capacity values directly as bid prices can lead to significant revenue loss as compared to using our heuristic to improve them. Finally, (3) we investigate numerically how much revenue performance is lost due to the confinement to product combinations that can be represented by a bid price.

                    The heuristic is not restricted to a particular choice model and can be combined with any method that provides us with estimates of the marginal values of capacity. In our numerical experiments, we test the heuristic on some popular networks examples taken from peer literature. We use a multinomial logit choice model which allows customers from different segments to have products in common that they consider to purchase. In most problem instances, our heuristic policy results in significant revenue gains over some currently available alternatives at low computational cost.
                    Keywords

                    Revenue Management, Network, Bid Prices, Choice Model

                    Status European Journal of Operational Research, Vol 217, Issue 2 (March 2012) pp 417–427.
                    Download mobile.ot188.cn/download/RM-Meissner-Strauss-04.pdf
                    (698 kb)
                    Reference BibTeX, Plain Text
                    Back to Publications


                        <form id="bbttr"><th id="bbttr"></th></form><address id="bbttr"></address>
                        <address id="bbttr"></address><form id="bbttr"></form>

                                      news

                                      aviation

                                      Second-hand housing

                                      Buddhism

                                      Buddhism

                                      Technology

                                      culture

                                      constellation

                                      Blog